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Abstract. The surface magnetization of degenerate ferromagnetic and antiferromagnetic
semiconductors is investigated. It can appear due to a surface potential acting on the charge
carriers or to an external electric field directed normally to the semiconducting film. In the first
case a double electric–magnetic layer arises at the surface. The difference in magnetizations
inside this layer is maximally pronounced close toTC . An external field reduces the total
magnetization of ferromagnetic semiconductors (the antimagnetoelectric effect) and produces
magnetization of initially non-magnetized antiferromagnetic semiconductors. Unlike the well
known magnetoelectric effect, such a surface magnetoelectric effect exists independently of the
symmetry of the crystal.

1. Introduction

Surface magnetism has been a subject of physical investigation for a long time (see, e.g.,
review articles [1–3]). Recently, interest in this phenomenon has greatly increased due to the
fact that it plays an important role in the properties of colossal-magnetoresistance materials
when used as thin films. There are many reasons for which the surface properties should
differ from the bulk ones. In the insulating Heisenberg systems this difference can be caused
by the very fact of breaking bonds between atoms at the surface, as well as by a difference
between the exchange couplings at the surface and in the bulk of a crystal. Usually this leads
to a reduced surface magnetization as compared to the bulk one. For example, the existence
was discovered of a paramagnetic layer on the surface of the ferromagnetic semiconductor
EuO well below the Curie point [4].

But in conducting magnetic systems where the conduction electrons realize an indirect
exchange between localized magnetic moments, the electron surface density can exceed the
bulk one. For this reason the surface indirect exchange coupling can be stronger than the
bulk one. For example, in ferromagnetic Gd the surface Curie point is 310 K whereas
the bulk one is only 292.5 K [5]. Moreover, in conducting systems the surface magnetic
ordering of antiferromagnetic crystals can transform into ferromagnetic ordering: in Cr the
surface Curie point is 780 K whereas the bulk Néel point is 312 K [6]. In EuO samples
containing several per cent of the donor impurity Gd, the surface magnetization turns out
to be much higher than that for the undoped samples. Also, the surface paramagnetism
disappears also after adsorption of Cs acting as a surface donor impurity [4, 7].

The aim of the present paper is to investigate theoretically specific features of the
surface magnetization of the group of degenerate magnetic semiconductors, to which, in
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particular, colossal-magnetoresistance materials of the lanthanum manganite type belong.
The consideration is based on the fact that the very existence of the surface or of an
external electric field produces a non-uniform charge-carrier distribution. As the carriers
realize the indirect exchange between magnetic atoms, a non-uniformity in their distribution
changes the magnetic properties of the system close to the surface.

One should discuss the cases of doped antiferromagnetic and ferromagnetic semi-
conductors separately. One should also keep in mind that the charge carriers tend to establish
the ferromagnetic ordering [8]. For this reason there is a tendency towards separation of
antiferromagnetic semiconductors into an insulating antiferromagnetic phase and a highly
conductive ferromagnetic phase [9, 10]. For thin films this manifests itself in the appearance
of a layered structure, with the surface layers being ferromagnetic or antiferromagnetic,
depending on the sign of the surface electron potential [11]. But the phase separation is
possible only in systems for which the Néel points are sufficiently low.

In the non-phase-separated antiferromagnetic semiconductors, another scenario is
realized. The RKKY theory of indirect exchange is inapplicable to them, and for this
reason non-trivial effects become possible. The collinear antiferromagnetic ordering is
stable up to a certain critical densitynA, and, starting from a still larger densitynF , the
ferromagnetic ordering becomes stable. In the range betweennA andnF , the energy of the
canted antiferromagnetic ordering is lower than the energies of both collinear states just
mentioned, though one cannot guarantee that the canted ordering is absolutely stable. For
example, some other state with non-saturated magnetization might be more energetically
favoured than the canted state.

If the mean density in the crystal is less thannA, then the surface potential can increase
the surface density (for example, this may occur after adsorption of certain species). As
a result, magnetized layers arise on the surface of an antiferromagnetic crystal. It should
be noted that surface canted antiferromagnetic ordering was observed in systems for which
bulk canted ordering is impossible [12].

The fact that the antiferromagnetic ordering becomes unstable at a finite charge-carrier
density makes it possible to observe a specific surface magnetoelectric effect. If one applies
an external electric field normally to a plane-parallel antiferromagnetic plate with the mean
charge-carrier densityn less thannA, then on one of its surfaces the carrier density may
exceednA, and this surface becomes magnetized. On the other hand, the opposite surface
with reduced density remains unmagnetized. Thus, the film as a whole becomes magnetized
by an external electric field.

To clarify this question, one should point out that usually one considers the magneto-
electric effect in uniform electric fields and infinite-size samples. Then a magnetization
linear in the external electric field arises if the crystal possesses special symmetry properties
[13]. As was pointed out in reference [8], at finite temperatures, in conducting infinite-size
crystals, a non-uniform electric field causes the magnetoelectric effect independently of the
crystal symmetry. Here it will be shown that, in conducting finite-size samples, the total
magnetization also arises under a uniform electric field, but this magnetization is quadratic
in the field strength.

As for the ferromagnetic semiconductors, change in the electron density always leads to
change in the local magnetization at finite temperatures. The local magnetization and charge-
carrier density are related to each other in a self-consistent manner: the local conduction
electron (or hole) density is higher for higher local magnetization, and vice versa [8]. One
should also take into account the fact that the non-uniform charge-carrier distribution close
to the surface produces electrostatic forces which can be reduced by the screening of this
distribution.
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As a result, a double magnetic–electric layer arises close to the surface. It consists of
two layers with opposite electric charges and different magnetizations. Depending on the
sign of the electron surface potential of the two layers forming the double layer, the layer
closest to the surface can be more strongly or more weakly magnetized. In the latter case
the other (‘subsurface’) layer should be the most strongly magnetized one in the crystal. The
magnetization effect is most pronounced in the vicinity of the Curie point. WhenT → 0
or T →∞ the difference in the magnetizations of both of the layers vanishes, and only an
electric double layer remains on the surface.

An external electric field changes the magnetization of a ferromagnetic semiconductor:
at finite temperatures the surface of the film with increased charge-carrier density is
magnetized more strongly, and the opposite surface is magnetized more weakly than the
bulk. But, unlike the case for an antiferromagnetic semiconductor, the electric field reduces
the total magnetization. Hence, one may speak of the antimagnetoelectric effect in this case.
As in the preceding case, the effect is maximal in the vicinity ofTC .

2. Magnon spectra and stability conditions for collinear structures

In this section some general results obtained by the author previously, which are necessary
for constructing the present theory, will be summarized. The standard s–d model is used to
describe the electric and magnetic properties of magnetic semiconductors:

H =
∑

Eka
∗
kσ akσ −

A

N

∑
(s · Sg)σ,σ ′exp[i(k − k′) · g]a∗kσ ak′σ ′ −

I

2

∑
Sg · Sg+∆ (1)

wherea∗kσ , akσ are the s-electron operators corresponding to the conduction electrons or
holes with the quasi-momentumk and spin projectionσ , s the s-electron spin operator,
Sg that of the d spin of atomg, N the number of atoms in the crystal,∆ the vector
connecting the first-nearest neighbours, andz their number. The first term in equation (1)
is the s-electron kinetic energy, the second is the s–d exchange energy, and the third is the
direct exchange interaction between d spins. For the sake of definiteness, the s–d exchange
integralA is assumed to be positive.

Two limiting cases will be considered: the double exchange when the s-electron band-
width W is small compared to the energyAS of the s–d exchange, whereS is the d-spin
magnitude, and the opposite case of a ‘weak’ s–d coupling,W � AS. An additional
condition appropriate for magnetic semiconductors will also be used in the latter case:
µ < AS whereµ is the Fermi energy. This reflects the relatively small charge-carrier
density in semiconductors, and, in the case of the ferromagnetic ordering, corresponds to
the complete spin polarization of the s electrons instead of the spin depolarization assumed
in the RKKY theory of indirect exchange. The latter condition means, in particular, that,
generally speaking, the RKKY theory is inapplicable to magnetic semiconductors.

The corresponding theory developed by the author for magnetic semiconductors is
described in the book [8]. The bulk magnon frequencies for a ferromagnetic semiconductor
are given by the expressions

ωq = ωdq + ωiq (2)

ωd = J (1− γq) J = ISz γq = 1

z

∑
∆

exp(iq ·∆) (3)

ωiq =
Aq2ν

2(q2+ q2
0)

q2
0 = 2mAS for W � AS (4)
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ωiq = Ji(1− γq) Ji = ztν

2S
for W � AS. (5)

Hereν = na3 the number of s electrons per magnetic atom,a the lattice constant, and
h̄ = 1. The s-electron energy is assumed to be expressed through their effective massm or
the hopping integralt in a standard manner:

Ek = −ztγk ∼= −zt + k2

2m
. (6)

In deducing equations (2)–(5), the inequalityS � 1 was also used.
In the case of collinear antiferromagnetic ordering, when the spin polarization of the s

electrons is absent, forW � AS the expression for the magnon frequencies coincides with
the RKKY expression:

ωq =
√
(KQ −Kq)(KQ −KQ+q) (Q = π/a, π/a, π/a) (7)

Kq = Jγq − A
2S

2N

∑ nk − nk+q
Ek − Ek+q nk = 2(µ− Ek)

where2(x) is the Heaviside step function. At small electron densities, the stability of the
antiferromagnetic ordering is a consequence ofJ being negative. The loss of the stability
begins when the magnon frequencies turn out to be imaginary at wave vectorsq close to
0 andQ. Then one obtains from equations (6) and (7) the density corresponding to the
antiferromagnetic instability:

νA = (3π2)2
(

16|J |
3Aq2

0a
2

)3

. (8)

As follows from equations (2) and (4), the ferromagnetic magnons become stable starting
from

νF = 4|J |
A
= 3ASνA

4µ
µ = (3π2n)2/3

2m
(9)

i.e., in fact, forµ < AS a range of densities exists over which both the antiferromagnetic
and the ferromagnetic orderings are unstable, and one may expect the existence of an
intermediate ordering with unsaturated magnetization.

Now the case of the double exchange will be discussed. Unfortunately, the magnon
spectrum has not been found for the antiferromagnetic state yet. Moreover, as the motion of
the charge carrier over the crystal is always accompanied with rotations of the d spins (the
magnetic string, or quasi-oscillator, effects [14]), it may even be the case that the magnons
cannot be separated from the charge carriers. For this reason another approach will be used
to prove that the antiferromagnetic ordering is stable up to some finite carrier density.

With this aim, the canted antiferromagnetic ordering will be considered, with 2θ being
the angle between the sublattice moments. Then, according to [8], the charge-carrier
spectrum consists of two subbands with the dispersion relations

E±(k) = −zt±γk (10)

t± = t (
√

1+ y2± y)√
2S + 1

y = M√
2S + 1

M = S cosθ.

The ground-state energy of this state, consisting of exchange and kinetic contributions,
is found from the expression

Eek = −3IS2N cos 2θ +
∑

E±(k)n±(k) (z = 6) (11)
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with allowance made for the independence of the total carrier number ofθ . Minimizing
equation (11) with respect toM, one finds, for small carrier numbers per magnetic atom
ν = n/N ,

−12IM − 6
∑
±
ν±

dt±
dM
= 0 (12)

where the relative carrier densities in both subbands are determined from the condition of
equality of the chemical potentials in them, i.e., from

t+[−6+ (6π2ν+)2/3] = t−[−6+ (6π2ν−)2/3]. (13)

Due to the smallν-values, the following inequality holds:

R(ν) ≡ 12(3π2ν)−2/3� 1.

For smallM one obtains from equations (10) and (13), with allowance made for this
inequality,

ν+ − ν− ' ν
[

3

4
Ry − 1

32
R3y3

]
. (14)

Thus the total energy can be written in the form

Eek/N = K0+K2M
2+K4M

4 (15)

K0 = 3IS2− 6tν√
2S + 1

+ 3(3π2)2/3tν5/3

5
√

2S + 1

K2 = −6I − 3tνR(ν)

4(2S + 1)3/2

K4 = 3tνR3(ν)

16(2S + 1)5/2
.

A similar expansion can be written down in the opposite case ofW � AS.
Expression (15) resembles the Landau expansion for the free energy in the phase trans-

ition theory. The coefficientK4 is always positive. AsI < 0, the coefficientK2 is positive
at small ν and negative forν sufficiently large. Hence, at such densities the collinear
antiferromagnetic ordering is unstable. It loses its stability at

νA =
(
π

3

)4 [2|I |(2S + 1)3/2

t

]3

∼ T 3
N

W(2S)3/2
(16)

whereTN is the Ńeel temperature of the undoped crystal which should be small as compared
with the bandwidthW .

As follows from equations (2), (3), and (5), the collinear ferromagnetic ordering becomes
stable at

νF = 2|I |S2

t
∼ TN

W
(17)

Because of the inequalityTN � W , a range of densities [nA, nF ] exists over which both
the collinear antiferromagnetic and the ferromagnetic orderings are unstable, and the canted
antiferromagnetic ordering has energy lower than that of the collinear antiferromagnetic
ordering.

It should be noted that the idea of the possibility of canted antiferromagnetic ordering
for double exchange was first advanced by de Gennes [15]. But only classical spins were
considered in that paper, and for this reason the quantityνA vanished there. Hence, in
some sense, the magnetoelectric effect considered below is essentially quantum mechanical.
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The boundary density for the collinear ferromagnetic ordering obtained in reference [15]
coincides with equation (17).

The calculations presented above do not necessarily imply that the canted state is
really stable. Possibly, some other state intermediate between the ferromagnetic and anti-
ferromagnetic states has still lower energy. If this state is partially magnetized, equation (15)
can be considered as phenomenological under the assumption thatK4 > 0, andK2 changes
its sign at a certainνA. Then at densities close toνA, the magnetization should be

M ∼ √ν − νA. (18)

Finally, expressions for the s-electron energy renormalized due to the interaction with
the magnons can be presented for the ferromagnetic semiconductors [8]. In the temperature
rangeTC/S � T � TC (whereTC is the Curie point), they are as follows (see equation (5)):

Esk = −
AM

2
− ztγk M = S − T

N

∑ 1

ωq
atW � AS (19)

Esk = −
AS

2
− zt3γk atW � AS (20)

3 = 1− T

2SN

∑ (1− γq)
ωq

= 1− T

2S(J + Ji) .

3. Double electric–magnetic layers in ferromagnetic semiconductors

We begin with the simpler case of the ferromagnetic semiconductor. A conducting crystal
with a simple cubic structure is considered, its shape being that of a thin film limited by the
x = ±L planes. Here the case in which the donor (acceptor) impurity positions are frozen
will be considered. The impurity is assumed to be distributed uniformly over the crystal.
The electron (hole) potential energy close to the surface is assumed to be given by

Ue(x) = ue coshαx

coshαL
(αL� 1) (21)

where 1/α is the surface potential length which is assumed to amount to several lattice
constantsa. In addition to this potential, the electron energy depends also on the local
magnetization. It is determined from equations (18) or (19), in which thex-dependent
magnon frequencies should be substituted. They are given by equations (2)–(5) generalized
for the x-dependent s-electron densityn(x):

ωq = ωdq + bqn(x) (bq > 0) (22)

where the meaning of the notationbq is obvious from equations (4) and (5). Such a local
coupling between the magnon frequency and the density takes place if the length over which
the density changes markedly is large compared with the typical magnon wavelength, which
is the lattice constant under the above-mentioned conditions. On the other hand, the typical
length for the electron density is the length of the surface potential 1/α or the screening
length 1/κ, which could be considered as large compared toa.

The electron density distribution is found from the condition of constant electrochemical
potential together with the Poisson equation. In the case whereW � AS, the former has
the form

Cn2/3(x)+ Ue(x)+ eφ(x)− AM(x)/2= constant C = (6π2)2/3

2m
(23)

wherem is the electron effective mass. In writing equation (23), the assumption was made
that all of the electrons are spin polarized, which is typically the case for ferromagnetic
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semiconductors in the spin-wave region. Furthermore,φ is the electrostatic potential arising
due to the non-uniform electron distribution. The latter should be determined from the
Poisson equation

d2φ

dx2
= −4πe

ε
δn(x) δn(x) = n(x)− n0 (24)

wheren0 is the compensating impurity density andε is the dielectric constant. Its boundary
conditions should express the sample electroneutrality:

dφ(L)

dx
= dφ(−L)

dx
= 0. (25)

We shall begin with the standard linearization procedure for equation (23), considering
δn(x) as small compared ton0. Then one obtains from equations (23)–(25)

δn(x) = − n′

1− 0 [Ue(x)+ eφ(x)] n′ = dn0/dµ (26)

φ(x) = ueκ
2

e(α2− κ2) coshαL

(
coshαx − α sinhαL coshκ

κ sinhκL

)
(27)

where the screening length 1/κ and the magnetoelectric parameter0 are given by the
following expressions:

κ2 = 4πe2n′

ε(1− 0) (28)

0 = 3n1/3A

2C

dM

dn
= 3n1/3AT

2CN

∑ bq

ω2
q

bq = Aq2a3

2(q2+ q2
0)

(29)

(equation (22) is used).
A similar calculation can be carried out for the case whereW � AS. With allowance

made for (20) and (23), the condition of constant electrochemical potential takes the
following form here:

C3(x)n2/3(x)+ Ue(x)+ eφ(x)− zt3(x) = constant. (30)

Due to the s-electron density being small, the renormalization of the hopping integral is
not taken into account here. Then, repeating the preceding calculations, one obtains again
equations (27) and (28), but equation (29) should be replaced by

0 = 3n1/3zt

2C

d3

dn
= 3n1/3T ta3

4SC(J + Ji)2 . (31)

As follows from equations (26) and (27), atx = 0 the change in the densityδn is
exponentially small. IfαL � 1, κL � 1, andα > κ, then, close enough to the surface,
the following expression is valid:

δn = − n′ueα
(1− 0)(α2− κ2)

[α exp(−αy)− κ exp(−κL)] y = |L− x|. (32)

As seen from equation (32), at the surfacey = 0 the sign ofδn is opposite to the sign
of ue, as should be the case. Butδn changes its sign over a length of

ls = 1

α − κ ln
α

κ
. (33)

The excess charge of the opposite sign disappears over a lengthlss of order 1/κ, which
is the effective thickness of the subsurface charge layer.
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According to equations (2) and (19), at finite temperatures the magnetization increases
with the electron density. Hence, forue < 0 the surface layer is charged negatively or
positively if the charge carriers are electrons or holes, respectively. But in both cases its
magnetization is higher than that of the subsurface layer. In contrast, forue > 0 the sign
of the charging of the surface layer is opposite, and its magnetization is lower than that of
the subsurface layer. This shows the tendency towards formation of a paramagnetic layer
on the surface of the ferromagnetic system.

It should be noted that the electric double layer exists at all temperatures, including
T = 0. But the magnetic double layer exists only at finite temperatures. AtT = 0
the magnetization is everywhere maximal, so the magnetic double layer cannot exist.
According to equations (29) and (31), in the spin-wave region the parameter0 increases
with temperature. Hence, according to equations (29), (31), and (33), the difference
in magnetization of the layers forming the double layer, as well as the difference in
its geometrical parametersls and lss , increase with temperature. But forT → ∞ the
magnetization disappears everywhere. Hence, the local magnetization cannot increase as a
result of an increased electron density, and the magnetic double layer does not appear, either.
This means that the magnetic double layer should be most pronounced at temperatures of
orderTC .

So far, only the case of smallδn has been discussed. According to equation (27), the
excess surface electron density is of orderue/µ. If ue is sufficiently large and positive,
a depletion layer should arise on the surface. For semiconductors withµ of the order of
several tenths of an eV, this situation is quite typical. In such cases the surface paramagnetic
layer should be especially pronounced.

4. Surface layers at mobile impurity atoms

So far, it has been assumed that the positions of the impurity atoms are frozen. Now the
case of mobile impurities will be discussed, in which not only the electrons but also the
compensating impurity atoms are mobile at temperatures for which a magnetic ordering
exists (for example, oxygen in HTSC cuprates; see the review article [10]). Then one
should take into account not only the surface potential for the electrons (21) but also the
surface potentialUi(x) for the compensating impurity, which differs from equation (21) by
the replacement ofue by ui . The condition for the electrochemical impurity potential to be
constant is written down with account taken of the requirement for the impurity-ion system
to be non-degenerate:

T ln vp(x)− eφ(x)+ Ui(x) = constant v = a3 (34)

wherep(x) is the impurity density. Linearizing (34) with respect toδp(x) = p(x) − p0,
one obtains the Poisson equation in the form

d2φ

dx2
= κ2

i φ + k
coshαx

coshαL
(35)

κ2
i =

4πe2

ε

(
n′

1− 0 +
n0

T

)
k = 4πe

ε

(
uen
′

1− 0 −
uin0

T

)
.

In solving equation (35), one should keep in mind that the contributions of the impurity
to κ2 and k are∼µ/T times larger than those of the electrons. For this reason one may
assume the inequalityκ > α. Then one obtains, close to the surface,

δn = − n′ue
1− 0 exp(−αy) δp = −n0up

T
exp(−αy). (36)
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As seen from equations (36), in the spin-wave region, with increase in temperature, the
difference between the surface and bulk electron densities increases. Hence, the surface
magnetization increases in absolute value, but its typical length here is only 1/α and not
1/κ. In contrast, the surface surplus or deficiency in the impurity density decreases with
temperature. This result is valid for all of the temperatures, and not only for the spin-
wave region. Well above the Curie point, the surface electron density becomes temperature
independent.

5. The surface magnetoelectric effect

First, the magnetoelectric effect will be investigated for a ferromagnetic semiconductor
with frozen impurity. A uniform electrostatic fieldF is applied perpendicularly to the film
surface. In this case, to simplify the treatment, one may putUe(x) = 0, and the boundary
conditions for equation (24) take the form

dφ(±L)
dx

= F. (37)

Then one obtains

φ(x) = F sinhκx

sinhκL
(38)

δn(x) = −q sinhκx

coshκL
q = Fκε

4πe
. (39)

One sees from equation (39) that at one surface the electric field increases the electron
density and, hence, the magnetization. At the other surface the magnetization is reduced
by the electric field. Using equations (19) and (20), one can find also the change in the
average magnetization induced by the electric field:

〈M〉 = M0− F
2T κεP

(4πe)2L
(40)

M0 = S − T

(2πa)3

∫
d3q

ω0
q

(40a)

P = 1

(2πa)3

∫
b2
q d3q

(ω0
q)

3
ω0
q = ωdq + bqn0

where the symbol〈· · ·〉 denotes averaging over the sample.
As seen from equation (40), the external electric field reduces the total magnetization.

This ‘antimagnetoelectric’ effect is quadratic in the field strength and disappears on increase
of the film thickness, being inversely proportional to it.

A real magnetoelectric effect is possible in doped antiferromagnetic semiconductors
with the charge-carrier density at which the collinear antiferromagnetic ordering is stable
(ν < νA). Then, under the electric field, the density at one of the surfaces may exceed
νA, whereas everywhere else it remains belowνA. The typical thickness of the layer with
ν > νA for which the magnetization is non-zero must be of the order of the screening length.
Hence, the total magnetization should vanish with increasing film thickness as 1/Lκ.

Certainly, the magnetization should depend on the coordinatex, which makes the
problem non-local. To treat it, a variational procedure will be used. Continuous changes
in the carrier density on moving off from both of the surfaces will be approximated by
step-like changes in the density. Moreover, it will be assumed that the widths of the layers
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on both sides of the film are equal to each other, which assumes that the field-induced
change in carrier density is not very large, and that the depletion layer does not arise. Then
the s-electron density is taken to be equal ton0 + λ betweenL andL − l, to n0 between
L − l and−L + l, and ton0 − λ between−L + l and−L. The relation between the
surplus densityλ and the thickness of the layersl is found from the condition that the total
electric field should vanish outside the surface layers. This gives

λl = εF

4πe
. (41)

Hence, l can be considered as a variational parameter. The magnetized ordering is
assumed to be canted antiferromagnetic, with the canting angleθ as another variational
parameter.

Only the case of the double exchange withW � AS will be treated. Forl � a the
total energy of the inhomogeneous system can be represented in the form

Etot = E(−L.−L+l)ek + E(−L+l,L−l)ek + E(L−l,L)ek + e
2

∫
d3r φ(x)[n(x)− n0]. (42)

The first three terms in (42) represent the exchange–kinetic energy (11) in the
correspondingx-ranges. In the case of the collinear antiferromagnetic ordering, with allo-
wance made for equation (41), the s-electron kinetic energy for collinear antiferromagnetic
ordering is given by the equation

Ecolek =
3(3π2)2/3ts

5
√

2S + 1a3

{
l

[(
n0+ εF

4πel

)5/3

+
(
n0− εF

4πel

)5/3
]
+ 2(L− l)n5/3

0

}
(43)

wheres is the surface area. This energy corresponds to the termK0 in equation (15) (the
energy of the d–d exchange is a constant and for this reason is omitted).

One can find the energyEM corresponding to terms of higher orders inM in equ-
ation (15). One should take into account the fact that the magnetization can be non-zero
only in the range [L − l, L]. Subsequent results will be written in the leading approxi-
mation inεF/4πeln0. According to equation (15), forν close to the boundary densityνA,
equation (16), the magnetizationM related to it depends on the density in the following
manner:

M2 = 31/3π8/3

72
(2S + 1)ν1/3

0 (ν − νA)2(ν − νA) (44)

where2(x) is the Heaviside function, andν0 = n0a
3. Hence, the reduction of the total

energy due to canting is

EM = − K2
2 ls

4K4νA
= − (3π

2)2/3t (ν − νA)2ls
144(2S + 1)1/2ν1/3

0 νA
. (45)

The electric potentialφ obeys the Poisson equation, coinciding in its form with equ-
ation (24). Using it, one obtains the electrostatic energy of the system:

EC = −εF
2ls

12π
. (46)

The variational parameterl is to be found from the condition for the minimal total
energyEcolek + EM + EC . At relatively small fields one obtains forl a value close enough
to the screening length:

l =
√

3aBn
−1/3
0

2
aB = 2εta2

e2
√

2S + 1
. (47)
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Then, as follows from equations (41) and (47), the magnetization should appear at the
field strength

FA = 4πel(nA − n0)

ε
. (48)

As seen from equations (44) and (48), the magnetization should depend on the field
according to the square-root-like relation:

M2 = 31/3π5/3(2S + 1)ν1/3
0 (F − FA)

288el
2(F − FA). (49)

One may expect the effect to be considerable both in the rare-earth compounds with
W � AS (Eu chalcogenides and so on) and in the double-exchange systems withW � AS

(lanthanum manganites and so on). To confirm this, numerical evaluation of the surface
magnetoelectric effect will be carried out. First, the antimagnetoelectric effect in the
ferromagnets will be evaluated. With this aim, one should evaluate the ratio of the field-
induced and zero-field temperature demagnetizations, i.e., the ratio of the second term in
equation (40) for〈M〉 and the second term in equation (40a) for M0, which forW � AS

is

rAME ∼ 10−2 (εeFaAS)
2(κa)

(e2/a)2T 2
C

a

L
. (50)

To evaluate the order of magnitude for the antimagnetoelectric effect, equation (50),
values of the parameters typical of Eu chalcogenides will be taken. Atε = 10,AS = 0.5 eV,
TC = 0.01 eV, eFa = 0.3 eV,L = 10a, and 1/κ = 3a, this ratio amounts to 50%, i.e., is
quite large. Certainly, the applied field is assumed to be very high, but recent successes in
the experimental techniques based on the use of substrates with extremely high dielectric
constants make such fields accessible [16].

Using (48) for the double-exchange system, one can also evaluate the field at which the
magnetization can appear. If one takesnA − n0 = 1020 cm−3, a = 3× 10−8 cm, ε = 10,
and l = 3a, one finds for the fieldFA a value of 3× 105 V cm−1. This field becomes very
small atn0, tending tonA.
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